Sign Patterns of G-Matrices

Frank J. Hall

Department of Mathematics and Statistics
Georgia State University
Atlanta, GA 30303, USA

G-Matrices

Sign Patterns

Minimum Rank

Open Questions

Outline

G-Matrices

Sign Patterns

Minimum Rank

Open Questions

M. Fiedler/F. Hall, G-Matrices, LAA, 2012

All matrices in the paper are real.
We call a matrix A a G-matrix if A is nonsingular and there exist nonsingular diagonal matrices D_{1} and D_{2} such that

$$
A^{-T}=D_{1} A D_{2}
$$

where A^{-T} denotes the transpose of the inverse of A.
The matrices D_{1} and D_{2} are not uniquely determined - we can multiply one by a nonzero number and divide the other by the same number.

A rich class of matrices!
Easy to see:
All orthogonal matrices are G-matrices.
All nonsingular diagonal matrices are G-matrices.
If A is a G-matrix, then both A^{T} and A^{-1} are G-matrices.
If A is an $n \times n$ G-matrix and D is an $n \times n$ nonsingular diagonal matrix, then both $A D$ and $D A$ are G-matrices.

If A is a G-matrix, then both matrices A and A^{-T} have the same zero, non-zero structure. Thus the zero, non-zero structures of A and A^{-1} are symmetric to each other.

The direct sum of G-matrices is again a G-matrix.

The product form of the definition leads to the following two facts:

Compound matrices of a G-matrix are also G-matrices.
The Kronecker product of G-matrices is a G-matrix.
Also:
A 2×2 matrix is G-matrix if and only if it is nonsingular and has four or two nonzero entries.

Cauchy matrices have form $C=\left[c_{i j}\right]$, where $c_{i j}=\frac{1}{x_{i}+y_{j}}$ for some numbers x_{i} and y_{j}.

We shall restrict to square, say $n \times n$, Cauchy matrices - such matrices are defined only if $x_{i}+y_{j} \neq 0$ for all pairs of indices i, j, and it is well known that C is nonsingular if and only if all the numbers x_{i} are mutually distinct and all the numbers y_{j} are mutually distinct.

From M. Fiedler, Notes on Hilbert and Cauchy matrices, LAA, 2010:

Every nonsingular Cauchy matrix is a G-matrix.

For generalized Cauchy matrices of order n, additional parameters $u_{1}, \ldots, u_{n}, v_{1}, \ldots, v_{n}$ are considered:

$$
\hat{C}=\left[\frac{u_{i} v_{j}}{x_{i}+y_{j}}\right] .
$$

Note that

$$
\hat{C}=D_{1} C D_{2}
$$

where

$$
D_{1}=\operatorname{diag}\left(u_{i}\right), \quad D_{2}=\operatorname{diag}\left(v_{j}\right)
$$

so that \hat{C} is a G-matrix.

Just a couple of results re the diagonal matrices:
Theorem. Suppose A is a G-matrix and $A^{-T}=D_{1} A D_{2}$, where D_{1} and D_{2} are nonsingular diagonal matrices. Then the inertia of D_{1} is equal to the inertia of D_{2}.

Proof. We have $A^{T} D_{1} A D_{2}=I$ and so $A^{T} D_{1} A=D_{2}^{-1}$. Since A is nonsingular, the result follows from Sylvester's Law of Inertia.

Remark. As the example of a diagonal matrix shows, the inertia of both matrices D_{1} and D_{2} need not be uniquely determined by the given G-matrix.

Theorem. Let A be a symmetric irreducible G-matrix. Then the diagonal matrices D_{1}, D_{2} in $A^{-T}=D_{1} A D_{2}$ can be chosen to be either the same or the negative of each other.

If A is positive definite then D_{1} and D_{2} can be chosen to be the same. If we denote the common matrix as D, then the matrix $A D$ is involutory. Denote the nonnegative square root of the modulus $|D|$ of D as $D^{\frac{1}{2}}$. Then the matrix $B=D^{\frac{1}{2}} A D^{\frac{1}{2}}$ has the property that all its integral powers are G-matrices.

Finally, if $S=\operatorname{diag}\left(\varepsilon_{1}, \varepsilon_{2}, \ldots, \varepsilon_{n}\right)$ is the matrix of the signs of D, ie. $S=D|D|^{-1}$, then the diagonal entries $a_{i i}$ of A and the diagonal entries $\alpha_{i i}$ of A^{-1} satisfy

$$
\sum_{i} \varepsilon_{i}\left(\sqrt{a_{i i} \alpha_{i i}}-1\right)=0
$$

Two papers on Generalized G-Matrices
M. Matsuura, A note on generalized G-matrices, LAA, 2012
M. Fiedler/T. Markham, More on G-matrices, LAA, 2013

Outline

G-Matrices

Sign Patterns

Minimum Rank

Open Questions

\mathcal{G}_{n} denotes the class of all $n \times n$ sign pattern matrices A that allow a G-matrix, ie, there exists a nonsingular matrix $B \in Q(A)$ such that $B^{-T}=D_{1} B D_{2}$ for some nonsingular diagonal matrices D_{1} and D_{2}.

Theorem The class \mathcal{G}_{n} is closed under
(i) multiplication (on either side) by a permutation pattern, and
(ii) multiplication (on either side) by a diagonal signature pattern.

The use of these operations in \mathcal{G}_{n} then produces "equivalent" sign patterns.

Let $\mathcal{C}_{n}\left(\mathcal{G C}_{n}\right)$ be the class of all sign patterns of the $n \times n$ nonsingular Cauchy (generalized Cauchy) matrices. It should be clear that $\mathcal{C}_{n}\left(\mathcal{G C}_{n}\right)$ is closed under operation (i) (operations (i) and (ii)) above. The classes \mathcal{C}_{n} and $\mathcal{G C}{ }_{n}$ are two particular sub-classes of \mathcal{G}_{n}.

Since $x+y=(x+c)+(y-c)$ and when we permute the rows/columns, we still have a Cauchy matrix C, for a given such nonsingular matrix, we can assume that

$$
x_{1}>x_{2}>\cdots>x_{n}>0,
$$

and

$$
y_{1}>y_{2}>\cdots>y_{n} .
$$

Further, the sign pattern of C is the same as the sign pattern of the matrix $\left[x_{i}+y_{j}\right]$. So, the following result is clear.

Theorem The class \mathcal{C}_{n} is the same as the class of $n \times n$ sign patterns permutation equivalent to a staircase sign pattern, where the part above (below) the staircase is all $+(-)$.

In this form, whenever there is a minus, then to the right and below there are also minuses.

Note that this form includes the all + and all - patterns.
However, for example, $\left[\begin{array}{ll}+ & - \\ - & +\end{array}\right]$ is excluded as a pattern in \mathcal{C}_{2}. In fact:

Theorem An $n \times n$ sign pattern matrix A belongs to \mathcal{C}_{n} if and only if it does not contain either one of the patterns

$$
\left[\begin{array}{ll}
+ & - \\
- & +
\end{array}\right] \text { or }\left[\begin{array}{ll}
- & + \\
+ & -
\end{array}\right]
$$

as submatrices.
Recall the form of generalized Cauchy matrix: $\hat{C}=D_{1} C D_{2}$.
Theorem The class $\mathcal{G C} \mathcal{C}_{n}$ is the same as the class of $n \times n$ sign patterns that are signature equivalent to a sign pattern in \mathcal{C}_{n}. Equivalently, $A \in \mathcal{G C}_{n}$ if and only if there exists a minimum rank one sign pattern matrix M such that $A \circ M \in \mathcal{C}_{n}$, where - denotes the Hadamard product.

Every $2 \times 2(+,-)$ sign pattern is a matrix in $\mathcal{G C}_{2}$. Every $3 \times 3(+,-)$ sign pattern is a matrix in $\mathcal{G C}_{3}$.

But, in general $\mathcal{G C}_{n}$ does not contain all the $(+,-) n \times n$ sign patterns, that is, there are forbidden sign patterns.

No GC-matrix can have the following pattern (or its equivalent or transpose) as submatrix:

$$
S_{3}=\left[\begin{array}{llll}
+ & - & + & + \\
+ & + & - & + \\
+ & + & + & -
\end{array}\right]
$$

By the way,

$$
S_{3}=\left[\begin{array}{llll}
+ & - & + & + \\
+ & + & - & + \\
+ & + & + & -
\end{array}\right]
$$

is an L-matrix. Every 3×4 real matrix with the same sign pattern as S_{3} has linearly independent rows.
R.A. Brualdi, K.L. Chavey, B.L. Shader, Rectangular L-matrices, LAA, 1994.
$\mathcal{P} \mathcal{O}_{n}$ is the class of $n \times n$ sign patterns which allow an orthogonal matrix. The class $\mathcal{P} \mathcal{O}_{n}$ is then a subclass of the class \mathcal{G}_{n}. In EHHL, CMJ, 1999, a number of nontrivial sign patterns in $\mathcal{P} \mathcal{O}_{n}$ (and hence in \mathcal{G}_{n}) are constructed.

EG The patterns

$$
\left[\begin{array}{lll}
+ & - & - \\
- & + & - \\
- & - & +
\end{array}\right],\left[\begin{array}{lll}
- & - & - \\
- & + & - \\
- & - & +
\end{array}\right]
$$

arising from Householder transformations, are in $\mathcal{P} \mathcal{O}_{3}$. These two patterns are then in the intersection of $\mathcal{P} \mathcal{O}_{3}$ and $\mathcal{G C}_{3}$.

The sign patterns

$$
\left[\begin{array}{cccc}
+ & - & - & - \\
- & + & - & - \\
- & - & + & - \\
- & - & - & +
\end{array}\right],\left[\begin{array}{cccc}
- & - & - & - \\
- & + & - & - \\
- & - & + & - \\
- & - & - & +
\end{array}\right]
$$

are examples of $\mathcal{P} \mathcal{O}_{4}$ patterns which are not in $\mathcal{G C}_{4}$, by a forbidden submatrix. The same holds for the corresponding Householder type patterns in $\mathcal{P} \mathcal{O}_{n}, \quad n \geq 4$.

Remark Not every sign pattern in \mathcal{G}_{n} is in $\mathcal{P} \mathcal{O}_{n}$ or in $\mathcal{G C}_{n}$. For example, the Kronecker product

$$
A=\left[\begin{array}{lll}
+ & + & - \\
- & + & - \\
+ & + & -
\end{array}\right] \otimes\left[\begin{array}{lll}
- & + & - \\
- & - & + \\
- & - & -
\end{array}\right]
$$

is in \mathcal{G}_{9} since the Kronecker product of G-matrices is a G-matrix.

Now,

$$
A=\left[\begin{array}{ccccccccc}
- & + & - & - & + & - & + & - & + \\
- & - & + & - & - & + & + & + & - \\
- & - & - & - & - & - & + & + & + \\
+ & - & + & - & + & - & + & - & + \\
+ & + & - & - & - & + & + & + & - \\
+ & + & + & - & - & - & + & + & + \\
- & + & - & - & + & - & + & - & + \\
- & - & + & - & - & + & + & + & - \\
- & - & - & - & - & - & + & + & +
\end{array}\right]
$$

By observing columns 4 and 7 of A, it is clear that $A \notin \mathcal{P} \mathcal{O}_{9}$. Also, by considering the submatrix at the intersection of rows $1,3,5$ and columns $2,4,5,6$, we know that A is equivalent to a pattern with a forbidden submatrix. So, $A \notin \mathcal{G C}_{9}$.

Outline

G-Matrices
 Sign Patterns

Minimum Rank

Open Questions

Back to \mathcal{C}_{n}, the class of all sign patterns of the $n \times n$ nonsingular Cauchy matrices.

Recall: The class \mathcal{C}_{n} is the same as the class of $n \times n$ sign patterns permutation equivalent to a staircase sign pattern, where the part above (below) the staircase is all $+(-)$.

Let C be an $n \times n$ nonsingular Cauchy matrix. Now, the sign pattern of C is the same as the sign pattern of the reciprocal matrix $\left[x_{i}+y_{j}\right]$. The reciprocal matrix has rank at most 2 , as any 3rd order subdet is 0 . But, clearly, excluding the all + and all - patterns, any real matrix in the sign pattern class has rank ≥ 2. Thus, excluding equivalences of the all + and all patterns, if $A \in \mathcal{C}_{n}$, then the minimum rank of A is 2 .

Recall: The class $\mathcal{G C}_{n}$ is the same as the class of $n \times n$ sign patterns that are signature equivalent to a sign pattern in \mathcal{C}_{n}.

Thus, excluding equivalences of the all + and all - patterns, if $A \in \mathcal{G C}_{n}$, then the minimum rank of A is 2 .

Also, if $A \in \mathcal{G C}_{n}$, then there are signature sign patterns D_{1}, D_{2} and permutation sign patterns P_{1}, P_{2} such that $P_{1} D_{1} A D_{2} P_{2}$ is a staircase sign pattern, where the part above (below) the staircase is all $+(-)$, that is, each row and each column of $P_{1} D_{1} A D_{2} P_{2}$ is nonincreasing. This then also holds for the condensed sign pattern A_{c}, where in general condensed means no zero line, no identical rows (or columns), and no two rows (or columns) which are negatives of each other.

This latter result is a special case of the following, from Z. Li et al, Sign patterns with minimum rank 2 and upper bounds on minimum ranks, LAMA, 2013:

Theorem An $m \times n$ sign pattern A has minimum rank 2 iff its condensed sign pattern A_{c} satisfies the conditions
(i) A_{c} has at least two rows and two columns,
(ii) each row and each column of A_{c} has at most one zero entry, and
(iii) there are signature sign patterns D_{1}, D_{2} and permutation sign patterns P_{1}, P_{2} such that each row and each column of $P_{1} D_{1} A_{c} D_{2} P_{2}$ is nonincreasing.

Note that the conditions in the above theorem imply that A_{c} is equivalent to a certain staircase pattern.

Next, suppose A is an $n \times n(+,-)$ sign pattern with minimum rank 2. From condition (iii) of the above theorem, there are signature sign patterns D_{1}, D_{2} and permutation sign patterns P_{1}, P_{2} such that each row and each column of $P_{1} D_{1} A_{c} D_{2} P_{2}$ is nonincreasing. This then also holds for the sign pattern matrix A, so that $A \in \mathcal{G C}{ }_{n}$.

We thus see that, excluding equivalences of the all + and all - patterns, $\mathcal{G C}_{n}$, the class of all sign patterns of the $n \times n$ nonsingular generalized Cauchy matrices, is the same as the class of all $n \times n(+,-)$ sign patterns with minimum rank 2 !

Recall: The patterns

$$
\left[\begin{array}{ccc}
+ & - & - \\
- & + & - \\
- & - & +
\end{array}\right], \quad\left[\begin{array}{ccc}
- & - & - \\
- & + & - \\
- & - & +
\end{array}\right]
$$

are in the intersection of $\mathcal{P} \mathcal{O}_{3}$ and $\mathcal{G C}_{3}$. So, the minimum rank of each pattern is 2 (it's also easy to see that each pattern is not SNS).

Recall: The sign pattern
$A=\left[\begin{array}{llll}+ & - & - & - \\ - & + & - & - \\ - & - & + & - \\ - & - & - & +\end{array}\right]$
is an example of a pattern which is not in $\mathcal{G C}_{4}$, by a forbidden submatrix.

From N. Alon, J.H. Spencer, The Probabilistic Method, 2000: If each row of a $(+,-)$ sign pattern M has at most k sign changes, then $\operatorname{mr}(M) \leq k+1$.

So, $\operatorname{mr}(A) \leq 3$. But, since $A \notin \mathcal{G C}_{4}, \operatorname{mr}(A) \neq 2$, and clearly, $\operatorname{mr}(A) \neq 1$. Thus, $\operatorname{mr}(A)=3$,

The same holds for the corresponding Householder type pattern in $\mathcal{P} \mathcal{O}_{n}, \quad n \geq 4$.

The same can be said for the Householder pattern

$$
\left[\begin{array}{cccc}
- & - & - & - \\
- & + & - & - \\
- & - & + & - \\
- & - & - & +
\end{array}\right]
$$

Next, what about the 3rd type, up to signature and permutation similarity, irreducible Householder pattern (of course in $\mathcal{P} \mathcal{O}_{3}$):

$$
\left[\begin{array}{ccc}
0 & - & - \\
- & + & - \\
- & - & +
\end{array}\right]
$$

It's easy to see that this pattern is not SNS and its minimum rank is 2.

What about the corresponding Householder type pattern $A \in \mathcal{P} \mathcal{O}_{n}, \quad n \geq 4$??

From the LAMA paper:
The number of polynomial sign changes of a sign pattern M, denoted $\operatorname{psc}(M)$, is the largest number of polynomial sign changes of the rows of M (for a sign pattern with zero entries, this entails a more general definition).

For every sign pattern $M, \operatorname{mr}(M) \leq \operatorname{psc}\left(M_{c}\right)+1$.
Now, for our pattern $A, \operatorname{psc}\left(A_{c}\right)=2$, so that $\operatorname{mr}(A) \leq 3$.
Observe that the 2nd, 3rd, and 4th rows form an L-matrix. So, $\operatorname{mr}(A) \geq 3$.

Thus, $\operatorname{mr}(A)=3$.

A minimum rank 3 reference:
Z. Li et al, Sign patterns with minimum rank 3 and point-line configurations

What is the minimum rank of the 9×9 pattern A on pages 20, 21??

$$
A=\left[\begin{array}{lllllllll}
- & + & - & - & + & - & + & - & + \\
- & - & + & - & - & + & + & + & - \\
- & - & - & - & - & - & + & + & + \\
+ & - & + & - & + & - & + & - & + \\
+ & + & - & - & - & + & + & + & - \\
+ & + & + & - & - & - & + & + & + \\
- & + & - & - & + & - & + & - & + \\
- & - & + & - & - & + & + & + & - \\
- & - & - & - & - & - & + & + & +
\end{array}\right]
$$

$A=A_{1} \otimes A_{2}$ where $\operatorname{mr}\left(A_{1}\right)=\operatorname{mr}\left(A_{2}\right)=2$.
For real $B_{1}, B_{2}, \operatorname{rank}\left(B_{1} \otimes B_{2}\right)=\operatorname{rank}\left(B_{1}\right) \operatorname{rank}\left(B_{2}\right)$.
So, $\operatorname{mr}(A) \leq \operatorname{mr}\left(A_{1}\right) \operatorname{mr}\left(A_{2}\right)=4$.
Rows $3,4,5$ of A form an L-matrix. So, $\operatorname{mr}(A) \geq 3$.
Thus, $\operatorname{mr}(A)=3$ or 4 .
Note that A does not contain an L-matrix with 4 rows.

Outline

G-Matrices

Sign Patterns

Minimum Rank

Open Questions

If $A \in \mathcal{G}_{n}$ then there exist a nonsingular matrix $B \in Q(A)$ and nonsingular diagonal matrices D_{1} and D_{2} such that $B^{-T}=D_{1} B D_{2}$. Hence, there are signature patterns S_{1} and S_{2} such that

$$
\begin{equation*}
B^{-1} \in Q\left(S_{1} A^{T} S_{2}\right) \tag{1}
\end{equation*}
$$

In particular, we may study the sign patterns $A \in \mathcal{G}_{n}$ for which there exist diagonal matrices D_{1}, D_{2} with positive diagonal entries in the equation $B^{-T}=D_{1} B D_{2}$. Then, (1) becomes

$$
\begin{equation*}
B^{-1} \in Q\left(A^{T}\right) . \tag{2}
\end{equation*}
$$

In fact, in EHHL, CMJ, 1999, the class \mathcal{T}_{n} of all $n \times n$ sign patterns A for which there exists a nonsingular matrix $B \in Q(A)$ where (2) holds was studied. There it was asked if the class \mathcal{T}_{n} is the same as the subclass $\mathcal{P} \mathcal{O}_{n}$. In the same spirit, we may pose the following questions:
(i) Suppose A is an $n \times n$ sign pattern matrix and there exists $B \in Q(A)$ such that (2) holds. Do there then exist diagonal matrices D_{1}, D_{2} with positive diagonal entries such that $B^{-T}=D_{1} B D_{2}$?
(ii) More generally, suppose that (1) holds for some A and B. Is B then necessarily a G-matrix, or, does there exist some $\hat{B} \in Q(A)$ that is a G-matrix?

Let A be an $n \times n$ sign pattern. Suppose there exist a nonsingular matrix $B \in Q(A)$ and nonsingular diagonal matrices D_{1}, D_{2} with + diagonal entries such that $B^{-T}=D_{1} B D_{2}$. Let $F=\sqrt{D_{1}}, G=\sqrt{D_{2}}$. Then

$$
(F B G)^{-1}=(F B G)^{T}
$$

So, $F B G$ is an orthogonal matrix in $Q(A)$. Conversely, if C is an orthogonal matrix in $Q(A)$, then $C^{-T}=C=I_{n} C I_{n}$.

Thus, A allows a G-matrix with associated diagonal matrices with + diagonal entries iff $A \in \mathcal{P} \mathcal{O}_{n}$. For such a sign pattern A, we have that $A \in \mathcal{T}_{n}$. Does the reverse hold???

Fiedler/Hall, Some inheritance properties for complementary basic matrices, LAA, 2010.
Fiedler/Hall, G-matrices, LAA, 2012.
Fiedler/Hall, A note on permanents and generalized complementary basic matrices, LAA, 2012.
Fiedler/Hall, Some graph theoretic properties of generalized complementary basic matrices, LAA, 2013.
Fiedler/Hall/Marsli, Gersgorin discs revisited, AMM, 2013.
Fiedler/Hall, Combinatorial aspects of generalized
complementary basic matrices, CEJM, 2013.
Fiedler/Hall, Factorizable matrices, Special Matrices journal, 2013.

Fiedler/Hall/Stroev, Dense alternating sign matrices and extensions, LAA, 2014.
Fiedler/Hall, Max algebraic complementary matrices, LAA, 2014.

Fiedler/Hall/Stroev, Permanents, determinants, and generalized comolementary basic matrices $\mathrm{O} a \mathrm{M}$ to abopear.

Fiedler/Hall/Stroev, Discriminant matrices, in preparation. Fiedler/Hall, More on generalized complementary basic matrices, in preparation.
Maybe hamburger matrices

